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Use Cases

● End user needs login to a site or service
● End user wants to share access to resources
● Users of enterprise A should use services of 

enterprise B
● Service C needs to access service D
● Service integration



  

End-User PoV

● I need to register to each site I want use
● I can't remember all usernames and passwords
● My preferred username is taken
● Login for each site I use
● Smooth services integration
● I won't be tracked

End User



  

Site Owner PoV

● We have to create another user management
● Registration, login mask, „forgot password“ mess 

● Storing passwords is a huge responsibility
● Less forms for users → higher conversion rate
● We want to integrate other services
● Our service must not rely on external services 

Site Owner



  

Identity Provider PoV

● Wants growing user base
● Track data to make money
● Make other depending on identity service

Identity Provider



  

Existing Solutions

● Own User Management
● Username / password

● Federated Identity Management + SSO
● OpenID, SAML, Kerberos
● „Login with Facebook“, „Login with Twitter“

● Access to Resources
● OAuth, X.509, Basic Authentication



  

Username / Password + Basic Auth

● Pros:
● Easy to implement and easy to understand
● No dependencies to external services 

● Cons:
● Simple passwords, easy to crack
● Same password for multiple services
● Disclosed to others

– When sent over unencrypted connections
– ftp://user23:w7Xu1$mU@www.example.com/video.mov

Site Owner End User

Site Owner



  

OpenID

● Version 2.0 since 2007
● Wants to solve the password problem
● Web Single Sign-On
● Decentral system

● Ad-hoc addition of RP and OP

● User-centric
● User selects provider s/he trusts. Or use your own.
● Delegation



  

OpenID

● Three Players
● End user with identifier (URI)
● Identity Provider (OP)
● Relying Party (RP)

http://farm1.static.flickr.com/163/351494842_cd83fef2f5_o.jpg



  

OpenID

● Identifiers:
● http://exampleuser.livejournal.com/
● https://www.google.com/accounts/o8/id?id=Abc...

● Delegation
● http://www.my-domain.com

<link rel="openid2.provider openid.server"
      href="http://www.livejournal.com/openid/server.bml"/>
<link rel="openid2.local_id openid.delegate"
      href="http://exampleuser.livejournal.com/"/>



  

OpenID

● Pros:
● Single identifier, single sign-on
● Simple registration, attribute exchange 

● Cons:
● OpenID provider may track you
● Hard to understand (URI as identifier, NASCAR)
● Doesn't work for mobile apps or JavaScript apps
● Dependency on external service

– At runtime; OpenID providers come and go → Delegation

Site Owner

End User

Site Owner

End User

End User

Adoption?



  

SAML

● Flow similar to OpenID
● User, service provider (SP), identity provider (IdP)

● Trust between IdP and SP
● XML based
● Used in enterprise and educational environment
● Adoption

● Implementations: MS ADFS, Shibboleth
● Google Apps, Salesforge



  

OAuth

● Let user control 3rd party access to resources
● Especially to access REST-APIs
● Default example: photo printing service

● OAuth 1.0 (RFC 5849)
● Browser-based flow only
● Crypographic signatures

● OAuth 2.0 (draft 21) 
● Flows for mobile and browser (JavaScript) apps
● Bearer tokens, SSL/TLS, short-living access tokens 

Library needed



  

OAuth 2.0

● Four players:
● Resource owner
● Client (3rd party application)
● Authorization server (AS)
● Resource server (RS) with protected resources

● Tree steps:

1.Client registration (once per client)

2.Obtaining authorization (once per user)

3.Obtaining access token and access resource

https://labs.ericsson.com/apis/oauth2-framework/files/webflow.png



  

OAuth 2.0

● Client registration
● Once per client
● Establish client_id and client_secret
● Not specified, no protocol



  

OAuth 2.0

● Obtaining authorization (access/refresh token)
● Authorization code

– Server-side webapp
● Implicit grant

– JavaScript app
– Access tokes in URI fragment

● Resource owner password credentials
– desktop or mobile app

● Client credentials
– if client is resource owner (2-legged)



  

OAuth 2.0

● Obtaining access token and access resource
● No more user interaction required
● Client uses refresh token to obtain access token

– short-living
● Client uses access token to access resource

– resource server must validate access token, not specified



  

OAuth

● Pros:
● No need to share credentials
● Separate access token for each 3rd party

● Cons:
● OAuth 1.0: complex, no support for apps
● Flows for mobile and desktop apps still sucks
● No specification of client registration, AS, RS
● Requires client registration

End User

Adoption?

Site Owner



  

Proprietary Stuff

● „Sign in with Twitter“
● Idea: only the user can allow access
● OAuth 1.0, registration required

● „Login with Facebook“
● https://graph.facebook.com/me?access_token=...
● OAuth2, registration required

● VZ* Login
● Janrain



  

Upcoming Solutions

● OpenID Connect
● Account Chooser
● BrowserID
● WebID



  

OpenID Connect

● Identity service on top of OAuth 2.0
● Login + SSO + access to basic attributess
● Most big players are involved

● Google
● Facebook
● Microsoft
● Yahoo



  

OpenID Connect

● Modular



  

OpenID Connect

● Demo
● https://oauthssodemo.appspot.com

https://oauthssodemo.appspot.com/


  

OpenID Connect

● Differences to OpenID 2.0
● Basics are simpler

– Attribute exchange (UserInfo endpoint) is built-in
– No cryptograhic signatures required → HTTPS
– No library required → HTTP parameters, JSON

● No more delegation
– Can be achieved through discovery

● No longer decentral
– Dynamic Client Registration is optional
– Optimized for big players

Site Owner

End User

User centric?



  

Account Chooser

● Invented by Google
● Transfer to OpenID Foundation in progress

● Spec: http://accountchooser.com/
● Legacy compatibility (local user database)
● Protocol agnostic (OpenID, SAML, etc.)
● Demos

– https://account-chooser.appspot.com/
– http://www.openidsamplestore.com/basic/

http://accountchooser.com/
https://account-chooser.appspot.com/
http://www.openidsamplestore.com/basic/


  

Account Chooser

● Prototype: Google Identity Tookit (GITkit)
–  http://code.google.com/apis/identitytoolkit/index.html

http://code.google.com/apis/identitytoolkit/v1/openid.html

http://code.google.com/apis/identitytoolkit/index.html


  

BrowserID

● From Mozilla Labs
● Email is your identity

● You can verify its ownership
● Mail provider is primary identity authority

● Implementations:
● Today: HTML5 based (local storage)
● Future: natve built into browsers

● Demo: http://myfavoritebeer.org/

http://lloyd.io/how-browserid-works

http://myfavoritebeer.org/


  

WebID

● W3C draft
● Application of Semantic Web
● SSL certificate with pointer to WebID Profile
● WebID Profile is RDF



  

Summary

● Authentication
● If you want SSO you are trackable
● Is dependency on external service acceptable?
● If you use Facebook of Twitter for login then 

upgrade to OpenID Connect

● API access
● OAuth is cool

End User

Site Owner

Site Owner



  

Resources

● OpenID Connect
● http://openid.net/connect/

● OAuth 2
● http://tools.ietf.org/html/draft-ietf-oauth-v2

● Apache Amber (in incubation)
● Java implemention of OAuth 2.0 (draft 10)
● Potentially OpenID Connect
● http://incubator.apache.org/amber
● https://cwiki.apache.org/confluence/display/AMBER

http://openid.net/connect/
http://tools.ietf.org/html/draft-ietf-oauth-v2
http://incubator.apache.org/amber
https://cwiki.apache.org/confluence/display/AMBER


  

Thanks for your attention
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