

Authentication in the Cloud

Stefan Seelmann

Agenda

● Use Cases
● View Points
● Existing Solutions
● Upcoming Solutions

Use Cases

● End user needs login to a site or service
● End user wants to share access to resources
● Users of enterprise A should use services of

enterprise B
● Service C needs to access service D
● Service integration

End-User PoV

● I need to register to each site I want use
● I can't remember all usernames and passwords
● My preferred username is taken
● Login for each site I use
● Smooth services integration
● I won't be tracked

End User

Site Owner PoV

● We have to create another user management
● Registration, login mask, „forgot password“ mess

● Storing passwords is a huge responsibility
● Less forms for users → higher conversion rate
● We want to integrate other services
● Our service must not rely on external services

Site Owner

Identity Provider PoV

● Wants growing user base
● Track data to make money
● Make other depending on identity service

Identity Provider

Existing Solutions

● Own User Management
● Username / password

● Federated Identity Management + SSO
● OpenID, SAML, Kerberos
● „Login with Facebook“, „Login with Twitter“

● Access to Resources
● OAuth, X.509, Basic Authentication

Username / Password + Basic Auth

● Pros:
● Easy to implement and easy to understand
● No dependencies to external services

● Cons:
● Simple passwords, easy to crack
● Same password for multiple services
● Disclosed to others

– When sent over unencrypted connections
– ftp://user23:w7Xu1$mU@www.example.com/video.mov

Site Owner End User

Site Owner

OpenID

● Version 2.0 since 2007
● Wants to solve the password problem
● Web Single Sign-On
● Decentral system

● Ad-hoc addition of RP and OP

● User-centric
● User selects provider s/he trusts. Or use your own.
● Delegation

OpenID

● Three Players
● End user with identifier (URI)
● Identity Provider (OP)
● Relying Party (RP)

http://farm1.static.flickr.com/163/351494842_cd83fef2f5_o.jpg

OpenID

● Identifiers:
● http://exampleuser.livejournal.com/
● https://www.google.com/accounts/o8/id?id=Abc...

● Delegation
● http://www.my-domain.com

<link rel="openid2.provider openid.server"
 href="http://www.livejournal.com/openid/server.bml"/>
<link rel="openid2.local_id openid.delegate"
 href="http://exampleuser.livejournal.com/"/>

OpenID

● Pros:
● Single identifier, single sign-on
● Simple registration, attribute exchange

● Cons:
● OpenID provider may track you
● Hard to understand (URI as identifier, NASCAR)
● Doesn't work for mobile apps or JavaScript apps
● Dependency on external service

– At runtime; OpenID providers come and go → Delegation

Site Owner

End User

Site Owner

End User

End User

Adoption?

SAML

● Flow similar to OpenID
● User, service provider (SP), identity provider (IdP)

● Trust between IdP and SP
● XML based
● Used in enterprise and educational environment
● Adoption

● Implementations: MS ADFS, Shibboleth
● Google Apps, Salesforge

OAuth

● Let user control 3rd party access to resources
● Especially to access REST-APIs
● Default example: photo printing service

● OAuth 1.0 (RFC 5849)
● Browser-based flow only
● Crypographic signatures

● OAuth 2.0 (draft 21)
● Flows for mobile and browser (JavaScript) apps
● Bearer tokens, SSL/TLS, short-living access tokens

Library needed

OAuth 2.0

● Four players:
● Resource owner
● Client (3rd party application)
● Authorization server (AS)
● Resource server (RS) with protected resources

● Tree steps:

1.Client registration (once per client)

2.Obtaining authorization (once per user)

3.Obtaining access token and access resource

https://labs.ericsson.com/apis/oauth2-framework/files/webflow.png

OAuth 2.0

● Client registration
● Once per client
● Establish client_id and client_secret
● Not specified, no protocol

OAuth 2.0

● Obtaining authorization (access/refresh token)
● Authorization code

– Server-side webapp
● Implicit grant

– JavaScript app
– Access tokes in URI fragment

● Resource owner password credentials
– desktop or mobile app

● Client credentials
– if client is resource owner (2-legged)

OAuth 2.0

● Obtaining access token and access resource
● No more user interaction required
● Client uses refresh token to obtain access token

– short-living
● Client uses access token to access resource

– resource server must validate access token, not specified

OAuth

● Pros:
● No need to share credentials
● Separate access token for each 3rd party

● Cons:
● OAuth 1.0: complex, no support for apps
● Flows for mobile and desktop apps still sucks
● No specification of client registration, AS, RS
● Requires client registration

End User

Adoption?

Site Owner

Proprietary Stuff

● „Sign in with Twitter“
● Idea: only the user can allow access
● OAuth 1.0, registration required

● „Login with Facebook“
● https://graph.facebook.com/me?access_token=...
● OAuth2, registration required

● VZ* Login
● Janrain

Upcoming Solutions

● OpenID Connect
● Account Chooser
● BrowserID
● WebID

OpenID Connect

● Identity service on top of OAuth 2.0
● Login + SSO + access to basic attributess
● Most big players are involved

● Google
● Facebook
● Microsoft
● Yahoo

OpenID Connect

● Modular

OpenID Connect

● Demo
● https://oauthssodemo.appspot.com

https://oauthssodemo.appspot.com/

OpenID Connect

● Differences to OpenID 2.0
● Basics are simpler

– Attribute exchange (UserInfo endpoint) is built-in
– No cryptograhic signatures required → HTTPS
– No library required → HTTP parameters, JSON

● No more delegation
– Can be achieved through discovery

● No longer decentral
– Dynamic Client Registration is optional
– Optimized for big players

Site Owner

End User

User centric?

Account Chooser

● Invented by Google
● Transfer to OpenID Foundation in progress

● Spec: http://accountchooser.com/
● Legacy compatibility (local user database)
● Protocol agnostic (OpenID, SAML, etc.)
● Demos

– https://account-chooser.appspot.com/
– http://www.openidsamplestore.com/basic/

http://accountchooser.com/
https://account-chooser.appspot.com/
http://www.openidsamplestore.com/basic/

Account Chooser

● Prototype: Google Identity Tookit (GITkit)
– http://code.google.com/apis/identitytoolkit/index.html

http://code.google.com/apis/identitytoolkit/v1/openid.html

http://code.google.com/apis/identitytoolkit/index.html

BrowserID

● From Mozilla Labs
● Email is your identity

● You can verify its ownership
● Mail provider is primary identity authority

● Implementations:
● Today: HTML5 based (local storage)
● Future: natve built into browsers

● Demo: http://myfavoritebeer.org/

http://lloyd.io/how-browserid-works

http://myfavoritebeer.org/

WebID

● W3C draft
● Application of Semantic Web
● SSL certificate with pointer to WebID Profile
● WebID Profile is RDF

Summary

● Authentication
● If you want SSO you are trackable
● Is dependency on external service acceptable?
● If you use Facebook of Twitter for login then

upgrade to OpenID Connect

● API access
● OAuth is cool

End User

Site Owner

Site Owner

Resources

● OpenID Connect
● http://openid.net/connect/

● OAuth 2
● http://tools.ietf.org/html/draft-ietf-oauth-v2

● Apache Amber (in incubation)
● Java implemention of OAuth 2.0 (draft 10)
● Potentially OpenID Connect
● http://incubator.apache.org/amber
● https://cwiki.apache.org/confluence/display/AMBER

http://openid.net/connect/
http://tools.ietf.org/html/draft-ietf-oauth-v2
http://incubator.apache.org/amber
https://cwiki.apache.org/confluence/display/AMBER

Thanks for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

