
Java LDAP Persisten
e

with DataNu
leus

by Stefan Seelmann

1 Motivation

When a Java developer needs to a

ess a dire
tory server over LDAP he has the
hoi
e between

multiple APIs.

There are low-level APIs whi
h provide dire
t a

ess to the operations de�ned by the LDAP

proto
ol, in
luding
ontrols and extended operations. Some mature implementations are the

Nets
ape LDAP SDK and JLDAP (Novell/OpenLDAP). There are also some newer implemen-

tations from UnboundID and ongoing implementations from Apa
he Dire
tory and OpenDS

proje
ts, whi
h leverage improvements of the Java language (Generi
s, NIO).

Then there is JNDI (Java Naming and Dire
tory Interfa
e). It is in
luded in Java SE and thus

widely used. The problem with JNDI is that it abstra
ts the LDAP proto
ol. It de�nes its own

wording: The bind() method for example
reates a new entry instead of doing an authenti
ation.

Spring-LDAP
an be used to simplify JNDI and to avoid boiler-plate
ode.

One drawba
k of all those APIs is that a Java developer has to deal with the LDAP proto
ol.

That makes sense when doing things like authenti
ation or when using a spe
i�

ontrol, but

not when the developer only wants to work with the obje
ts stored in the dire
tory.

In the Java universe two major persisten
e standards exist: JPA and JDO. While JPA (Java

Persisten
e API) was designed for RDBMS only, JDO (Java Data Obje
ts) was designed inde-

pendent of the underlying datastore.

This paper will dis
uss the usage of JDO and its implementation DataNu
leus for LDAP persis-

ten
e.

2 JDO and DataNu
leus Overview

The aim of JDO is to provide a Java-
entri
 API to a

ess persistent data. DataNu
leus is

the referen
e implementation of the JDO API. It also supports other APIs (JPA, REST) and

supports a wide range of datastores (RDBMS, db4o, LDAP, Ex
el, XML, NeoDatis, JSON, ODF,

Google BigTable, Hadoop HBase).

The JDO spe
i�
ation [1℄
onsists of three main parts:

• Persisten
e De�nition

• Persisten
e API

• Query Language

2.1 Persisten
e De�nition

The persisten
e metadata des
ribes what data to persist and where to persist it in the datastore.

This
an be done by adding annotations to the persistable domain
lasses or by spe
ifying XML

metadata. Best pra
tise is to use a
ombination of both: spe
ifying basi
 persisten
e info as

annotations, and adding datastore spe
i�
 info to XML �les.

�Persisten
eCapable
publi

lass User publi

lass User <
lass name="User">
{ {

�Persistent(primaryKey="true") <field name="uid" primaryKey="true" />
String uid; String uid;

�Persistent <field name="phoneNumbers"
Set<String> phoneNumbers; Set<String> phoneNumbers; persisten
e-modifier="persistent"/>
... ...

} } </
lass>

Ea
h persistable
lass must implement the javax.jdo.spi.Persisten
eCapable. DataNu
leus

uses a byte
ode enhan
er to add this interfa
e and its methods to Java
lasses.

2.2 Persisten
e API

The
entral
lass of the persisten
e API is the javax.jdo.Persisten
eManager
lass. It is

obtained from the javax.jdo.Persisten
eManagerFa
tory.

Persisten
eManagerFa
tory pmf =
JDOHelper.getPersisten
eManagerFa
tory("datanu
leus.properties");

Persisten
eManager pm = pmf.getPersisten
eManager();

For storing and loading obje
ts, the persisten
e manager provides methods like makePersistent(),

deletePersistent(), and getObje
tById().

2.3 Query API and Language

The query API and language is used to retrieve obje
ts. A query
ould either be
onstru
ted

using the javax.jdo.Query or by a SQL-like string.

A query may
ontain elements like the
andidate
lass to sear
h for, a �lter, an ordering state-

ment, and aggregation instru
tions. A query is translated for the native datastore. If the

datastore
an't handle su
h a query, DataNu
leus provides an in-memory evaluation of queries.

Another important feature of JDO are fet
h groups. They are used to
ontrol whi
h �elds of an

obje
t should be loaded from the datastore.

3 DataNu
leus LDAP Store Basi
 Example

The DataNu
leus LDAP store [4℄ is a plugin in DataNu
leus that supports persisting obje
ts

to dire
tory server using the LDAP proto
ol. To show how the LDAP store works a basi

example is used. The LDAP server
ontains user entries with obje
t
lass inetOrgPerson below

ou=Users,d
=example,d
=
om.

3.1 Domain Class and Persisten
e Metadata

The obvious approa
h is to map one entry to one Java obje
t. So the �rst step is to
reate a

domain
lass User and to de�ne the persisten
e metadata.

1 �Persisten
eCapable(table = "ou=Users,d
=example,d
=
om",
2 s
hema = "top,person,organizationalPerson,inetOrgPerson")
3 publi

lass User
4 {
5 �Persistent(
olumn = "
n", primaryKey = "true")
6 private String fullName;
7
8 �Persistent(
olumn = "givenName")
9 private String firstName;

10
11 �Persistent(
olumn = "sn")
12 private String lastName;
13
14 �Persistent(
olumn = "employeeNumber")
15 private long personNumber;
16
17 �Persistent(
olumn = "des
ription", defaultFet
hGroup = "true")
18 private Calendar dayOfBirth;
19
20 �Persistent(
olumn = "telephoneNumber", defaultFet
hGroup = "true")
21 private Set<String> phoneNumbers = new HashSet<String>();
22 ...
23 }

The
lass is a simple Java Bean
lass, the
onstru
tor as well as getters and setters are omitted.

This example uses annotations only to de�ne persisten
e metadata. Note: The JDO spe
i�-

ation de�nes
ommon annotations and additional ORM (Obje
t Relational Mapping) spe
i�

annotations. For the LDAP store some of these ORM annotations are reused. JDO also allows

to de�ne
ustom annotations, however their extensive usage would blow up the sour
e
ode.

The
lass is marked to be persisted with the �Persisten
eCapable (lines 1 and 2). The table

parameter de�nes the
ontainer entry where obje
ts of type User are persisted. The s
hema

parameter de�nes the obje
t
lasses of the entry. This information is also used to lookup User

obje
ts: the table parameter is used as sear
h base, the default sear
h s
ope is one level and

the obje
t
lasses are used to
onstru
t the sear
h �lter.

The �elds that should be persisted are marked with the �Persistent annotation. The
olumn

parameter is used to de�ne whi
h LDAP attribute to use. On line 5 an additional parameter

primaryKey="true" is used to mark the RDN attribute. Beside Strings and primitive types also

omplex types
an be persisted. On lines 17 and 18 an java.util.Calendar �eld is persisted.

Date and Calendar �elds are automati
ally
onverted to generalized time syntax. An additional

parameter defaultFet
hGroup="true" must be spe
i�ed to load this �eld automati
ally when

retrieving the obje
t. Lines 20 and 21 de�ne a set with multiple phone numbers. Colle
tions of

String or wrappers of primitives are automati
ally mapped to multi-valued attributes.

3.2 Persisten
e Code

Now the persiten
e
ode
an be writen.

1 publi

lass Main
2 {
3 publi
 stati
 void main(String[℄ args)
4 {
5 // obtain the persisten
e manager
6 Persisten
eManagerFa
tory pmf =
7 JDOHelper.getPersisten
eManagerFa
tory("datanu
leus.properties");
8 Persisten
eManager pm = pmf.getPersisten
eManager();
9

10 //
reate a user
11 User user = new User("Bugs Bunny", "Bugs", "Bunny");
12 user = pm.makePersistent(user);
13
14 // sear
h for users whi
h last name begins with 'B'
15 Query query = pm.newQuery(User.
lass);
16 query.setFilter("lastName.startsWith('B')");
17 Colle
tion<User> users = (Colle
tion<User>) query.exe
ute();
18 System.out.println(users);
19
20 // delete the user
21 pm.deletePersistent(user);
22 }
23 }

First the persisten
e manager is obtained (lines 6-8). In lines 10 and 11 a User obje
t is
reated

and persisted to the dire
tory. Lines 14-16 demonstrate how to query for User obje
ts. At last

at line 20 the obje
t is deleted from dire
tory.

3.3 Run

To run the example the DataNu
leus libraries and dependen
ies are needed, they
an be down-

loaded from [2℄. There is a separate ar
hive for the LDAP store
alled datanu
leus-a

essplatform-

ldap-<version>.zip. Additional the domain
lass must be enhan
ed, whi
h
ould be a tri
ky part.

The DataNu
leus website [3℄ shows all available enhan
ement options. A re
ommended way to

manage dependen
ies and to build a proje
t is to use a build tool like Maven or Ant.

A �nal preparation is the
on�guration of the persisten
e manager. A basi
 persisten
e
on�gu-

ration datanu
leus.properties for LDAP looks like this:

1 javax.jdo.Persisten
eManagerFa
toryClass=org.datanu
leus.jdo.JDOPersisten
eManagerFa
tory
2 javax.jdo.option.Conne
tionDriverName=
om.sun.jndi.ldap.LdapCtxFa
tory
3 javax.jdo.option.Conne
tionURL=ldap://lo
alhost:10389
4 javax.jdo.option.Conne
tionUserName=uid=admin,ou=system
5 javax.jdo.option.Conne
tionPassword=se
ret

Line 1 spe
i�ed the persisten
e manager fa
tory, here the DataNu
leus implementation is used.

The LDAP store uses JNDI, line 2 de�nes the
ontext fa
tory. Line 3 de�ne the LDAP server's

host and port. Line 4 and 5 spe
ify the authenti
ation
redentials.

4 DataNu
leus LDAP Store Details

This
hapter des
ribes features and design de
isions of the LDAP datastore.

4.1 Basi
 Mapping

In general, ea
h obje
t of a persisten
e
apable obje
t is mapped to its own LDAP entry. The

lass must be marked with the �Persisten
eCapable annotation. The s
hema parameter of the

annotations de�nes the obje
t
lasses for the entry. When persisting an obje
t the obje
t
lasses

are automati
ally added, the Java developer doesn't have to deal with it.

The �elds of the Java obje
ts are mapped to attributes of the LDAP entries. Strings and primitive

�elds are automati
ally persisted, other �elds must be marked with the �Persistent annotation.

The
olumn parameter is used to de�ne the LDAP attribute name, if omitted the �eld name is

used.

String, primtives, wrappers of primitives, BigDe
imal, BigInteger, Date and Calendar �elds

are stored as single-valued attribute. Date and Calendar are
onverted to generalized time

syntax. Colle
tions, Sets and Lists of these data types are stored as multi-valued attributes.

If lists are marked with the �Order annotation the values are pre�xed with an index {i}. For

other non-persistable Java types that have a string representation it is possible to
reate own

Obje
tStringConverters. Byte array �elds are stored as binary attribute to the entry.

4.2 Obje
t Identity and Distinguished Name

JDO requires that ea
h persistable obje
t has an identity. The LDAP store only supports

appli
ation identity and single-�eld identity. This means that exa
tly one �eld of the obje
t is

used as primary key and must be marked as primary key (�Persistent(primaryKey="true")

or �PrimaryKey). This �eld be
omes the RDN attribute of the entry. As a
onsequen
e only

single-valued RDNs are supported. All single-valued non-persistable �eld types des
ribed in the

previous se
tion may be used as primary key �eld.

The parent entry of an entry in the DIT is
ontrolled via the table parameter. The syntax of

the parameter value
an be:

• distinguished name: De�nes the
ontainer entry for that type. All obje
t of that type are

persisted as
hild entries below this
ontainer entry. To retrieve obje
ts of that type this DN

is used as sear
h base (plus one-level s
ope and a �lter
onstru
ted from s
hema parameter).

It is possible to store di�erent types into the same
ontainer, as A
tive Dire
tory does with

User and Group entries.

• LDAP URL (only dn, s
ope and �lter are used: ldap:///<dn>??<s
ope>?<�lter>). This

allows a more �ne-grained de�nition of the entry lo
ation. The DN has the same meaning

as above. S
ope base means that there is only one single instan
e of that
lass it is persisted

at the given DN. S
ope sub makes only sense with hierar
hi
al mapping, see below. The

�lter
ould be used as a dis
riminator for types that have the same obje
t
lasses but vary

in some other attribute.

• {<parent �eld name>}: A referen
e to the parent obje
t �eld, used for hierar
hi
al rela-

tionships. The
hild Java obje
ts need a non-null referen
e to its logi
al parent. Su
h a

hild obje
t is then persisted a
hild entry of the parent entry. This
ould also be re
ursive

(the parent is itself a
hild of its parent).

4.3 Relationship Mapping Strategies

DataNu
leus implements di�erent strategies for persisting relationships that
over LDAP best

pra
ti
es.

4.3.1 By Distinguished Name

One entry points to another entry by storing the distinguished name of the target entry. This is

used by group entries using the groupOfNames obje
t
lass. This strategy is used by default for

�elds referen
ing persisten
e
apable obje
ts.

1 �Persisten
eCapable(table = "ou=Groups,d
=example,d
=
om", s
hema = "top,groupOfNames")
2 publi

lass Group
3 {
4 �Persistent(
olumn = "member")
5 �Extension(vendorName = "datanu
leus", key = "empty-value", value = "uid=admin,ou=system")
6 prote
ted Set<User> members = new HashSet<User>();
7 ...
8 }
9

10 �Persisten
eCapable(table = "ou=Users,d
=example,d
=
om",
11 s
hema = "top,person,organizationalPerson,inetOrgPerson"
12 publi

lass User
13 {
14 �Persistent(mappedBy = "members")
15 prote
ted Set<Group> memberOf = new HashSet<Group>();
16 ...
17 }

Here we see an N:M bidire
tional relationship. The Group
lass is the owner of the relationship

(mapped-by spe
i�ed on the User side of the relation) and de�nes the attribute member where

DNs are stored (line 5). The extension in line 6
overs the
ase that the group
ontains no

member, in this
ase a dummy value is added be
ause member is a mandatory attribute of

groupOfNames. The �eld memberOf of the User
lass isn't stored in the dire
tory, hen
e it is

marked as mapped by the other �eld.

4.3.2 By Attribute Mat
h

This is similar to the previous strategy, however only an attribute value of the target entry is

stored. This is used by posixGroup and posixA

ount obje
t
lasses. The only di�eren
e is to

add an �Join(
olumn="gidNumber") annotation. The Join tells DataNu
leus to use attribute

mat
hing, the
olumn spe
i�es the attribute of the target entry that
ontains the value to mat
h.

4.3.3 Hierar
hi
al with Parent Referen
e

The main
hallenge with hierar
hi
al mapping is that the distinguished name (DN) of
hildren

depends on the DN of their parent. Ea
h
hild obje
t needs to have a referen
e to its parent

obje
t, to be able to determine where it should be persisted in the DIT. The
hild
lass metadata

doesn't
ontain a �xed
ontainer DN but the name of the �eld holding the referen
e to the parent

obje
t.

The following example demonstrates this strategy. All Department obje
ts are persisted into

d
=example,d
=
om. The User obje
ts are persisted below their department entries.

�Persisten
eCapable(table="d
=example,d
=
om", d
=example,d
=
om
s
hema="top,organizationalUnit") |

publi

lass Department |-- ou=Sales
{ | |--
n=Bugs Bunny

... | |--
n=Daffy Du
k
} | |-- ...

|
�Persisten
eCapable(table="{department}", |-- ou=Engineering

s
hema="top,person,organizationalPerson,inetOrgPerson") | |--
n=Speedy Gonzales
publi

lass User | |-- ...
{ |

... |-- ...
�Persistent(defaultFet
hGroup = "true")
private Department department;
...

}

4.3.4 Embedded as Child Entry

This strategy is used to design a
ontainment (is-part-of) relationship. Only the owner obje
t

has its own identity. The embedded obje
ts
an't be retrieved on their own, they
ould only

be retrieved by traversing the obje
t graph starting at the owner obje
t. If the owner obje
t is

loaded all the embedded obje
ts are loaded too.

publi

lass Person dn:
n=Bugs Bunny,ou=Persons,d
=example,d
=
om
{ obje
tClass: top

private String fullName; obje
tClass: person
private String firstName; obje
tClass: organizationalPerson
private String lastName; obje
tClass: inetOrgPerson
private A

ount a

ount;
n: Bugs Bunny
... givenName: Bugs

} sn: Bunny

publi

lass A

ount dn: uid=bbunny,
n=Bugs Bunny,ou=Persons,d
=example,d
=
om
{ obje
tClass: top

private String uid; obje
tClass: a

ount
private String password; obje
tClass: simpleSe
urityObje
t
... uid: bbunny

} userPassword: se
ret

The JDO metadata for this kind of mapping looks like this. The A

ount
lass is marked as

embedded-only and no DN is spe
i�ed.

<
lass name="Person" table="ou=Persons,d
=example,d
=
om"
s
hema="top,person,organizationalPerson,inetOrgPerson">

<field name="fullName" primary-key="true"
olumn="
n" />
<field name="firstName"
olumn="givenName" />
<field name="lastName"
olumn="sn" />
<field name="a

ount">

<embedded />
</field>

</
lass>
<
lass name="A

ount" embedded-only="true" s
hema="top,a

ount,simpleSe
urityObje
t">

<field name="uid" primary-key="true"
olumn="uid" />
<field name="password"
olumn="userPassword" />

</
lass>

4.3.5 Embedded into Owner Entry

This is similar to the previous strategy, however the �elds of the embedded obje
t are stored

within the owner entry. As an example personal information of a person and its a

ount data

ould be stored in one inetOrgPerson entry.

publi

lass Person dn:
n=Bugs Bunny,ou=Persons,d
=example,d
=
om
{ obje
tClass: top

private String fullName; obje
tClass: person
private String firstName; obje
tClass: organizationalPerson
private String lastName; obje
tClass: inetOrgPerson
private A

ount a

ount;
n: Bugs Bunny
... givenName: Bugs

} sn: Bunny
publi

lass A

ount uid: bbunny
{ userPassword: se
ret

private String uid;
private String password;
...

}

The JDO metadata for this kind of mapping looks like this, there is no separate
lass de�nition

for the A

ount
lass:

<
lass name="Person" table="ou=Persons,d
=example,d
=
om"
s
hema="top,person,organizationalPerson,inetOrgPerson">

<field name="fullName" primary-key="true"
olumn="
n" />
<field name="firstName"
olumn="givenName" />
<field name="lastName"
olumn="sn" />
<field name="a

ount">

<embedded null-indi
ator-
olumn="uid">
<field name="uid"
olumn="uid" />
<field name="password"
olumn="userPassword" />

</embedded>
</field>

</
lass>

Obviously this strategy brings some limitations. Only one instan
e of a Java
lass
an be stored

embedded, if there would be multiple uid and userPassword attribute it would not be possible

to determine whi
h values are asso
iated.

4.4 Queries

The query language of JDO is very powerful. The LDAP store
onverts the query into a native

LDAP sear
h request. Obviously not all query elements
ould be applied in LDAP, in fa
t only

a subset of the �lter expressions are
onverted to LDAP �lters:

• Logi
al expressions: &, |

• Operators: ==, !=, <, <=, >, >=

• Methods: startsWith(), endsWith()

More advan
ed �lters, aggregation and ordering are handled by the in-memory query evaluator.

That
ould mean that all obje
ts of a type are loaded from the dire
tory and evaluated in

memory, be aware of that!

4.5 Future Work

The following points should be addressed in future:

• En
ryption and strong authenti
ation for LDAP
onne
tions.

• Improvements in handling of large data. This may in
lude lazy loading of
olle
tions, e.g.

using paged sear
h or VLV
ontrol.

• Improvements in handling of hierar
hi
al data. Retrieving
hild obje
ts doesn't work in

some
ases. DN referen
es are not updated when moving obje
ts within the DIT. JDO

Compound Identity may be a good option.

• Improvements in query handling.

• S
hema awareness, e.g. to de
ide if a �eld
ould be stored to a parti
ular LDAP attribute

type or if a substring or ordering �lter
ould be applied.

• Versioning support to dete
t
on
urrent updates. Attributes
reateTimestamp, modify-

Timestamp or entryCSN may be used.

• Support for java.util.Map.

• Auto-
reation of missing
ontainer entries.

• Auto-
reation of s
hema (obje
t
lasses and attribute type).

• Leverage JDO transa
tions as soon as there is a standardized transa
tion me
hanism for

LDAP.

5 Con
lusion

The usage of JDO for LDAP persisten
e makes sense when the dire
tory server is the datastore

for business obje
ts. The developer
an
on
entrate on the business obje
ts and
an persist and

retrieve these obje
ts using a standardized API. No need to mess around with LDAP. However

JDO
an't be used in the area where LDAP is strong: doing authenti
ation.

The usage of JDO is also a trade of. It is a mature standard whi
h has been updated multiple

times. It also was designed to work in all environments, from embedded systems to large enter-

prise deployments. Thus the spe
i�
ation is quite
omplex and the
on
epts (life
y
les, transa
-

tions,
on�guration parameters) need to be learned. So if only some entries and attributes need

to be read from the dire
tory it may not be worth using JDO.

Referen
es

[1℄ JDO Spe
i�
ation, http://db.apa
he.org/jdo/spe
i�
ations.html

[2℄ DataNu
leus download site, http://www.datanu
leus.org/proje
t/download.html

[3℄ DataNu
leus enhan
er, http://www.datanu
leus.org/produ
ts/a

essplatform_2_0/enhan
er.html

[4℄ DataNu
leus LDAP store, http://www.datanu
leus.org/produ
ts/a

essplatform_2_0/ldap/support.html

	1 Motivation
	2 JDO and DataNucleus Overview
	2.1 Persistence Definition
	2.2 Persistence API
	2.3 Query API and Language

	3 DataNucleus LDAP Store Basic Example
	3.1 Domain Class and Persistence Metadata
	3.2 Persistence Code
	3.3 Run

	4 DataNucleus LDAP Store Details
	4.1 Basic Mapping
	4.2 Object Identity and Distinguished Name
	4.3 Relationship Mapping Strategies
	4.3.1 By Distinguished Name
	4.3.2 By Attribute Match
	4.3.3 Hierarchical with Parent Reference
	4.3.4 Embedded as Child Entry
	4.3.5 Embedded into Owner Entry

	4.4 Queries
	4.5 Future Work

	5 Conclusion

