
Java LDAP Persistene

with DataNuleus

by Stefan Seelmann

1 Motivation

When a Java developer needs to aess a diretory server over LDAP he has the hoie between

multiple APIs.

There are low-level APIs whih provide diret aess to the operations de�ned by the LDAP

protool, inluding ontrols and extended operations. Some mature implementations are the

Netsape LDAP SDK and JLDAP (Novell/OpenLDAP). There are also some newer implemen-

tations from UnboundID and ongoing implementations from Apahe Diretory and OpenDS

projets, whih leverage improvements of the Java language (Generis, NIO).

Then there is JNDI (Java Naming and Diretory Interfae). It is inluded in Java SE and thus

widely used. The problem with JNDI is that it abstrats the LDAP protool. It de�nes its own

wording: The bind() method for example reates a new entry instead of doing an authentiation.

Spring-LDAP an be used to simplify JNDI and to avoid boiler-plate ode.

One drawbak of all those APIs is that a Java developer has to deal with the LDAP protool.

That makes sense when doing things like authentiation or when using a spei� ontrol, but

not when the developer only wants to work with the objets stored in the diretory.

In the Java universe two major persistene standards exist: JPA and JDO. While JPA (Java

Persistene API) was designed for RDBMS only, JDO (Java Data Objets) was designed inde-

pendent of the underlying datastore.

This paper will disuss the usage of JDO and its implementation DataNuleus for LDAP persis-

tene.

2 JDO and DataNuleus Overview

The aim of JDO is to provide a Java-entri API to aess persistent data. DataNuleus is

the referene implementation of the JDO API. It also supports other APIs (JPA, REST) and

supports a wide range of datastores (RDBMS, db4o, LDAP, Exel, XML, NeoDatis, JSON, ODF,

Google BigTable, Hadoop HBase).

The JDO spei�ation [1℄ onsists of three main parts:

• Persistene De�nition

• Persistene API

• Query Language

2.1 Persistene De�nition

The persistene metadata desribes what data to persist and where to persist it in the datastore.

This an be done by adding annotations to the persistable domain lasses or by speifying XML

metadata. Best pratise is to use a ombination of both: speifying basi persistene info as

annotations, and adding datastore spei� info to XML �les.

�PersisteneCapable
publi lass User publi lass User <lass name="User">
{ {

�Persistent(primaryKey="true") <field name="uid" primaryKey="true" />
String uid; String uid;

�Persistent <field name="phoneNumbers"
Set<String> phoneNumbers; Set<String> phoneNumbers; persistene-modifier="persistent"/>
... ...

} } </lass>

Eah persistable lass must implement the javax.jdo.spi.PersisteneCapable. DataNuleus

uses a byte ode enhaner to add this interfae and its methods to Java lasses.

2.2 Persistene API

The entral lass of the persistene API is the javax.jdo.PersisteneManager lass. It is

obtained from the javax.jdo.PersisteneManagerFatory.

PersisteneManagerFatory pmf =
JDOHelper.getPersisteneManagerFatory("datanuleus.properties");

PersisteneManager pm = pmf.getPersisteneManager();

For storing and loading objets, the persistene manager provides methods like makePersistent(),

deletePersistent(), and getObjetById().

2.3 Query API and Language

The query API and language is used to retrieve objets. A query ould either be onstruted

using the javax.jdo.Query or by a SQL-like string.

A query may ontain elements like the andidate lass to searh for, a �lter, an ordering state-

ment, and aggregation instrutions. A query is translated for the native datastore. If the

datastore an't handle suh a query, DataNuleus provides an in-memory evaluation of queries.

Another important feature of JDO are feth groups. They are used to ontrol whih �elds of an

objet should be loaded from the datastore.

3 DataNuleus LDAP Store Basi Example

The DataNuleus LDAP store [4℄ is a plugin in DataNuleus that supports persisting objets

to diretory server using the LDAP protool. To show how the LDAP store works a basi

example is used. The LDAP server ontains user entries with objet lass inetOrgPerson below

ou=Users,d=example,d=om.

3.1 Domain Class and Persistene Metadata

The obvious approah is to map one entry to one Java objet. So the �rst step is to reate a

domain lass User and to de�ne the persistene metadata.

1 �PersisteneCapable(table = "ou=Users,d=example,d=om",
2 shema = "top,person,organizationalPerson,inetOrgPerson")
3 publi lass User
4 {
5 �Persistent(olumn = "n", primaryKey = "true")
6 private String fullName;
7
8 �Persistent(olumn = "givenName")
9 private String firstName;

10
11 �Persistent(olumn = "sn")
12 private String lastName;
13
14 �Persistent(olumn = "employeeNumber")
15 private long personNumber;
16
17 �Persistent(olumn = "desription", defaultFethGroup = "true")
18 private Calendar dayOfBirth;
19
20 �Persistent(olumn = "telephoneNumber", defaultFethGroup = "true")
21 private Set<String> phoneNumbers = new HashSet<String>();
22 ...
23 }

The lass is a simple Java Bean lass, the onstrutor as well as getters and setters are omitted.

This example uses annotations only to de�ne persistene metadata. Note: The JDO spei�-

ation de�nes ommon annotations and additional ORM (Objet Relational Mapping) spei�

annotations. For the LDAP store some of these ORM annotations are reused. JDO also allows

to de�ne ustom annotations, however their extensive usage would blow up the soure ode.

The lass is marked to be persisted with the �PersisteneCapable (lines 1 and 2). The table

parameter de�nes the ontainer entry where objets of type User are persisted. The shema

parameter de�nes the objet lasses of the entry. This information is also used to lookup User

objets: the table parameter is used as searh base, the default searh sope is one level and

the objet lasses are used to onstrut the searh �lter.

The �elds that should be persisted are marked with the �Persistent annotation. The olumn

parameter is used to de�ne whih LDAP attribute to use. On line 5 an additional parameter

primaryKey="true" is used to mark the RDN attribute. Beside Strings and primitive types also

omplex types an be persisted. On lines 17 and 18 an java.util.Calendar �eld is persisted.

Date and Calendar �elds are automatially onverted to generalized time syntax. An additional

parameter defaultFethGroup="true" must be spei�ed to load this �eld automatially when

retrieving the objet. Lines 20 and 21 de�ne a set with multiple phone numbers. Colletions of

String or wrappers of primitives are automatially mapped to multi-valued attributes.

3.2 Persistene Code

Now the persitene ode an be writen.

1 publi lass Main
2 {
3 publi stati void main(String[℄ args)
4 {
5 // obtain the persistene manager
6 PersisteneManagerFatory pmf =
7 JDOHelper.getPersisteneManagerFatory("datanuleus.properties");
8 PersisteneManager pm = pmf.getPersisteneManager();
9

10 // reate a user
11 User user = new User("Bugs Bunny", "Bugs", "Bunny");
12 user = pm.makePersistent(user);
13
14 // searh for users whih last name begins with 'B'
15 Query query = pm.newQuery(User.lass);
16 query.setFilter("lastName.startsWith('B')");
17 Colletion<User> users = (Colletion<User>) query.exeute();
18 System.out.println(users);
19
20 // delete the user
21 pm.deletePersistent(user);
22 }
23 }

First the persistene manager is obtained (lines 6-8). In lines 10 and 11 a User objet is reated

and persisted to the diretory. Lines 14-16 demonstrate how to query for User objets. At last

at line 20 the objet is deleted from diretory.

3.3 Run

To run the example the DataNuleus libraries and dependenies are needed, they an be down-

loaded from [2℄. There is a separate arhive for the LDAP store alled datanuleus-aessplatform-

ldap-<version>.zip. Additional the domain lass must be enhaned, whih ould be a triky part.

The DataNuleus website [3℄ shows all available enhanement options. A reommended way to

manage dependenies and to build a projet is to use a build tool like Maven or Ant.

A �nal preparation is the on�guration of the persistene manager. A basi persistene on�gu-

ration datanuleus.properties for LDAP looks like this:

1 javax.jdo.PersisteneManagerFatoryClass=org.datanuleus.jdo.JDOPersisteneManagerFatory
2 javax.jdo.option.ConnetionDriverName=om.sun.jndi.ldap.LdapCtxFatory
3 javax.jdo.option.ConnetionURL=ldap://loalhost:10389
4 javax.jdo.option.ConnetionUserName=uid=admin,ou=system
5 javax.jdo.option.ConnetionPassword=seret

Line 1 spei�ed the persistene manager fatory, here the DataNuleus implementation is used.

The LDAP store uses JNDI, line 2 de�nes the ontext fatory. Line 3 de�ne the LDAP server's

host and port. Line 4 and 5 speify the authentiation redentials.

4 DataNuleus LDAP Store Details

This hapter desribes features and design deisions of the LDAP datastore.

4.1 Basi Mapping

In general, eah objet of a persistene apable objet is mapped to its own LDAP entry. The

lass must be marked with the �PersisteneCapable annotation. The shema parameter of the

annotations de�nes the objet lasses for the entry. When persisting an objet the objet lasses

are automatially added, the Java developer doesn't have to deal with it.

The �elds of the Java objets are mapped to attributes of the LDAP entries. Strings and primitive

�elds are automatially persisted, other �elds must be marked with the �Persistent annotation.

The olumn parameter is used to de�ne the LDAP attribute name, if omitted the �eld name is

used.

String, primtives, wrappers of primitives, BigDeimal, BigInteger, Date and Calendar �elds

are stored as single-valued attribute. Date and Calendar are onverted to generalized time

syntax. Colletions, Sets and Lists of these data types are stored as multi-valued attributes.

If lists are marked with the �Order annotation the values are pre�xed with an index {i}. For

other non-persistable Java types that have a string representation it is possible to reate own

ObjetStringConverters. Byte array �elds are stored as binary attribute to the entry.

4.2 Objet Identity and Distinguished Name

JDO requires that eah persistable objet has an identity. The LDAP store only supports

appliation identity and single-�eld identity. This means that exatly one �eld of the objet is

used as primary key and must be marked as primary key (�Persistent(primaryKey="true")

or �PrimaryKey). This �eld beomes the RDN attribute of the entry. As a onsequene only

single-valued RDNs are supported. All single-valued non-persistable �eld types desribed in the

previous setion may be used as primary key �eld.

The parent entry of an entry in the DIT is ontrolled via the table parameter. The syntax of

the parameter value an be:

• distinguished name: De�nes the ontainer entry for that type. All objet of that type are

persisted as hild entries below this ontainer entry. To retrieve objets of that type this DN

is used as searh base (plus one-level sope and a �lter onstruted from shema parameter).

It is possible to store di�erent types into the same ontainer, as Ative Diretory does with

User and Group entries.

• LDAP URL (only dn, sope and �lter are used: ldap:///<dn>??<sope>?<�lter>). This

allows a more �ne-grained de�nition of the entry loation. The DN has the same meaning

as above. Sope base means that there is only one single instane of that lass it is persisted

at the given DN. Sope sub makes only sense with hierarhial mapping, see below. The

�lter ould be used as a disriminator for types that have the same objet lasses but vary

in some other attribute.

• {<parent �eld name>}: A referene to the parent objet �eld, used for hierarhial rela-

tionships. The hild Java objets need a non-null referene to its logial parent. Suh a

hild objet is then persisted a hild entry of the parent entry. This ould also be reursive

(the parent is itself a hild of its parent).

4.3 Relationship Mapping Strategies

DataNuleus implements di�erent strategies for persisting relationships that over LDAP best

praties.

4.3.1 By Distinguished Name

One entry points to another entry by storing the distinguished name of the target entry. This is

used by group entries using the groupOfNames objet lass. This strategy is used by default for

�elds referening persistene apable objets.

1 �PersisteneCapable(table = "ou=Groups,d=example,d=om", shema = "top,groupOfNames")
2 publi lass Group
3 {
4 �Persistent(olumn = "member")
5 �Extension(vendorName = "datanuleus", key = "empty-value", value = "uid=admin,ou=system")
6 proteted Set<User> members = new HashSet<User>();
7 ...
8 }
9

10 �PersisteneCapable(table = "ou=Users,d=example,d=om",
11 shema = "top,person,organizationalPerson,inetOrgPerson"
12 publi lass User
13 {
14 �Persistent(mappedBy = "members")
15 proteted Set<Group> memberOf = new HashSet<Group>();
16 ...
17 }

Here we see an N:M bidiretional relationship. The Group lass is the owner of the relationship

(mapped-by spei�ed on the User side of the relation) and de�nes the attribute member where

DNs are stored (line 5). The extension in line 6 overs the ase that the group ontains no

member, in this ase a dummy value is added beause member is a mandatory attribute of

groupOfNames. The �eld memberOf of the User lass isn't stored in the diretory, hene it is

marked as mapped by the other �eld.

4.3.2 By Attribute Math

This is similar to the previous strategy, however only an attribute value of the target entry is

stored. This is used by posixGroup and posixAount objet lasses. The only di�erene is to

add an �Join(olumn="gidNumber") annotation. The Join tells DataNuleus to use attribute

mathing, the olumn spei�es the attribute of the target entry that ontains the value to math.

4.3.3 Hierarhial with Parent Referene

The main hallenge with hierarhial mapping is that the distinguished name (DN) of hildren

depends on the DN of their parent. Eah hild objet needs to have a referene to its parent

objet, to be able to determine where it should be persisted in the DIT. The hild lass metadata

doesn't ontain a �xed ontainer DN but the name of the �eld holding the referene to the parent

objet.

The following example demonstrates this strategy. All Department objets are persisted into

d=example,d=om. The User objets are persisted below their department entries.

�PersisteneCapable(table="d=example,d=om", d=example,d=om
shema="top,organizationalUnit") |

publi lass Department |-- ou=Sales
{ | |-- n=Bugs Bunny

... | |-- n=Daffy Duk
} | |-- ...

|
�PersisteneCapable(table="{department}", |-- ou=Engineering

shema="top,person,organizationalPerson,inetOrgPerson") | |-- n=Speedy Gonzales
publi lass User | |-- ...
{ |

... |-- ...
�Persistent(defaultFethGroup = "true")
private Department department;
...

}

4.3.4 Embedded as Child Entry

This strategy is used to design a ontainment (is-part-of) relationship. Only the owner objet

has its own identity. The embedded objets an't be retrieved on their own, they ould only

be retrieved by traversing the objet graph starting at the owner objet. If the owner objet is

loaded all the embedded objets are loaded too.

publi lass Person dn: n=Bugs Bunny,ou=Persons,d=example,d=om
{ objetClass: top

private String fullName; objetClass: person
private String firstName; objetClass: organizationalPerson
private String lastName; objetClass: inetOrgPerson
private Aount aount; n: Bugs Bunny
... givenName: Bugs

} sn: Bunny

publi lass Aount dn: uid=bbunny,n=Bugs Bunny,ou=Persons,d=example,d=om
{ objetClass: top

private String uid; objetClass: aount
private String password; objetClass: simpleSeurityObjet
... uid: bbunny

} userPassword: seret

The JDO metadata for this kind of mapping looks like this. The Aount lass is marked as

embedded-only and no DN is spei�ed.

<lass name="Person" table="ou=Persons,d=example,d=om"
shema="top,person,organizationalPerson,inetOrgPerson">

<field name="fullName" primary-key="true" olumn="n" />
<field name="firstName" olumn="givenName" />
<field name="lastName" olumn="sn" />
<field name="aount">

<embedded />
</field>

</lass>
<lass name="Aount" embedded-only="true" shema="top,aount,simpleSeurityObjet">

<field name="uid" primary-key="true" olumn="uid" />
<field name="password" olumn="userPassword" />

</lass>

4.3.5 Embedded into Owner Entry

This is similar to the previous strategy, however the �elds of the embedded objet are stored

within the owner entry. As an example personal information of a person and its aount data

ould be stored in one inetOrgPerson entry.

publi lass Person dn: n=Bugs Bunny,ou=Persons,d=example,d=om
{ objetClass: top

private String fullName; objetClass: person
private String firstName; objetClass: organizationalPerson
private String lastName; objetClass: inetOrgPerson
private Aount aount; n: Bugs Bunny
... givenName: Bugs

} sn: Bunny
publi lass Aount uid: bbunny
{ userPassword: seret

private String uid;
private String password;
...

}

The JDO metadata for this kind of mapping looks like this, there is no separate lass de�nition

for the Aount lass:

<lass name="Person" table="ou=Persons,d=example,d=om"
shema="top,person,organizationalPerson,inetOrgPerson">

<field name="fullName" primary-key="true" olumn="n" />
<field name="firstName" olumn="givenName" />
<field name="lastName" olumn="sn" />
<field name="aount">

<embedded null-indiator-olumn="uid">
<field name="uid" olumn="uid" />
<field name="password" olumn="userPassword" />

</embedded>
</field>

</lass>

Obviously this strategy brings some limitations. Only one instane of a Java lass an be stored

embedded, if there would be multiple uid and userPassword attribute it would not be possible

to determine whih values are assoiated.

4.4 Queries

The query language of JDO is very powerful. The LDAP store onverts the query into a native

LDAP searh request. Obviously not all query elements ould be applied in LDAP, in fat only

a subset of the �lter expressions are onverted to LDAP �lters:

• Logial expressions: &, |

• Operators: ==, !=, <, <=, >, >=

• Methods: startsWith(), endsWith()

More advaned �lters, aggregation and ordering are handled by the in-memory query evaluator.

That ould mean that all objets of a type are loaded from the diretory and evaluated in

memory, be aware of that!

4.5 Future Work

The following points should be addressed in future:

• Enryption and strong authentiation for LDAP onnetions.

• Improvements in handling of large data. This may inlude lazy loading of olletions, e.g.

using paged searh or VLV ontrol.

• Improvements in handling of hierarhial data. Retrieving hild objets doesn't work in

some ases. DN referenes are not updated when moving objets within the DIT. JDO

Compound Identity may be a good option.

• Improvements in query handling.

• Shema awareness, e.g. to deide if a �eld ould be stored to a partiular LDAP attribute

type or if a substring or ordering �lter ould be applied.

• Versioning support to detet onurrent updates. Attributes reateTimestamp, modify-

Timestamp or entryCSN may be used.

• Support for java.util.Map.

• Auto-reation of missing ontainer entries.

• Auto-reation of shema (objet lasses and attribute type).

• Leverage JDO transations as soon as there is a standardized transation mehanism for

LDAP.

5 Conlusion

The usage of JDO for LDAP persistene makes sense when the diretory server is the datastore

for business objets. The developer an onentrate on the business objets and an persist and

retrieve these objets using a standardized API. No need to mess around with LDAP. However

JDO an't be used in the area where LDAP is strong: doing authentiation.

The usage of JDO is also a trade of. It is a mature standard whih has been updated multiple

times. It also was designed to work in all environments, from embedded systems to large enter-

prise deployments. Thus the spei�ation is quite omplex and the onepts (lifeyles, transa-

tions, on�guration parameters) need to be learned. So if only some entries and attributes need

to be read from the diretory it may not be worth using JDO.

Referenes

[1℄ JDO Spei�ation, http://db.apahe.org/jdo/spei�ations.html

[2℄ DataNuleus download site, http://www.datanuleus.org/projet/download.html

[3℄ DataNuleus enhaner, http://www.datanuleus.org/produts/aessplatform_2_0/enhaner.html

[4℄ DataNuleus LDAP store, http://www.datanuleus.org/produts/aessplatform_2_0/ldap/support.html

	1 Motivation
	2 JDO and DataNucleus Overview
	2.1 Persistence Definition
	2.2 Persistence API
	2.3 Query API and Language

	3 DataNucleus LDAP Store Basic Example
	3.1 Domain Class and Persistence Metadata
	3.2 Persistence Code
	3.3 Run

	4 DataNucleus LDAP Store Details
	4.1 Basic Mapping
	4.2 Object Identity and Distinguished Name
	4.3 Relationship Mapping Strategies
	4.3.1 By Distinguished Name
	4.3.2 By Attribute Match
	4.3.3 Hierarchical with Parent Reference
	4.3.4 Embedded as Child Entry
	4.3.5 Embedded into Owner Entry

	4.4 Queries
	4.5 Future Work

	5 Conclusion

